Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 35(3): 631-638, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646750

RESUMO

Litter input triggers the secretion of soil extracellular enzymes and facilitates the release of carbon (C), nitrogen (N), and phosphorus (P) from decomposing litter. However, how soil extracellular enzyme activities were controlled by litter input with various substrates is not fully understood. We examined the activities and stoichiometry of five enzymes including ß-1,4-glucosidase, ß-D-cellobiosidase, ß-1,4-N-acetyl-glucosaminidase, leucine aminopeptidase and acidic phosphatase (AP) with and without litter input in 10-year-old Castanopsis carlesii and Cunninghamia lanceolata plantations monthly during April to August, in October, and in December 2021 by using an in situ microcosm experiment. The results showed that: 1) There was no significant effect of short-term litter input on soil enzyme activity, stoichiometry, and vector properties in C. carlesii plantation. In contrast, short-term litter input significantly increased the AP activity by 1.7% in May and decreased the enzymatic C/N ratio by 3.8% in August, and decreased enzymatic C/P and N/P ratios by 11.7% and 10.3%, respectively, in October in C. lanceolata plantation. Meanwhile, litter input increased the soil enzymatic vector angle to 53.8° in October in C. lanceolata plantations, suggesting a significant P limitation for soil microorganisms. 2) Results from partial least squares regression analyses showed that soil dissolved organic matter and microbial biomass C and N were the primary factors in explaining the responses of soil enzymatic activity to short-term litter input in both plantations. Overall, input of low-quality (high C/N) litter stimulates the secretion of soil extracellular enzymes and accelerates litter decomposition. There is a P limitation for soil microorganisms in the study area.


Assuntos
Carbono , Cunninghamia , Fagaceae , Nitrogênio , Fósforo , Microbiologia do Solo , Solo , Solo/química , Cunninghamia/crescimento & desenvolvimento , Cunninghamia/metabolismo , Carbono/metabolismo , Carbono/análise , Nitrogênio/metabolismo , Nitrogênio/análise , Fósforo/metabolismo , Fósforo/análise , Fagaceae/crescimento & desenvolvimento , Fagaceae/metabolismo , Leucil Aminopeptidase/metabolismo , Celulose 1,4-beta-Celobiosidase/metabolismo , Ecossistema , Folhas de Planta/metabolismo , Folhas de Planta/química , Acetilglucosaminidase/metabolismo , Fosfatase Ácida/metabolismo , beta-Glucosidase/metabolismo , China
2.
ACS Omega ; 9(14): 16118-16127, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38617627

RESUMO

Supercapacitors are widely used in many fields owing to their advantages, such as high power, good cycle performance, and fast charging speed. Among the many metal-oxide cathode materials reported for supercapacitors, NiMoO4 is currently the most promising electrode material for high-specific-energy supercapacitors. We have employed a rational design approach to create a nanorod-like NiMoO4 structure, which serves as a conductive scaffold for supercapacitors; the straightforward layout has led to outstanding results, with nanorod-shaped NiMoO4 exhibiting a remarkable capacity of 424.8 F g-1 at 1 A g-1 and an impressive stability of 80.2% capacity preservation even after 3500 cycles, which surpasses those of the majority of previously reported NiMoO4 materials. NiMoO4//AC supercapacitors demonstrate a remarkable energy density of 46.31 W h kg-1 and a power density of 0.75 kW kg-1. This synthesis strategy provides a facile method for the fabrication of bimetallic oxide materials for high-performance supercapacitors.

3.
Sci Total Environ ; 923: 171412, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447733

RESUMO

Understanding the spatial variability of ecosystem functions is an important step forward in predicting changes in ecosystems under global transformations. Plant functional traits are important drivers of ecosystem functions such as net primary productivity (NPP). Although trait-based approaches have advanced rapidly, the extent to which specific plant functional traits are linked to the spatial diversity of NPP at a regional scale remains uncertain. Here, we used structural equation models (SEMs) to disentangle the relative effects of abiotic variables (i.e., climate, soil, nitrogen deposition, and human footprint) and biotic variables (i.e., plant functional traits and community structure) on the spatial variation of NPP across China and its eight biomes. Additionally, we investigated the indirect influence of climate and soil on the spatial variation of NPP by directly affecting plant functional traits. Abiotic and biotic variables collectively explained 62.6 % of the spatial differences of NPP within China, and 28.0 %-69.4 % across the eight distinct biomes. The most important abiotic factors, temperature and precipitation, had positive effects for NPP spatial variation. Interestingly, plant functional traits associated with the size of plant organs (i.e., plant height, leaf area, seed mass, and wood density) were the primary biotic drivers, and their positive effects were independent of biome type. Incorporating plant functional traits improved predictions of NPP by 6.7 %-50.2 %, except for the alpine tundra on the Qinghai-Tibet Plateau. Our study identifies the principal factors regulating NPP spatial variation and highlights the importance of plant size traits in predictions of NPP variation at a large scale. These results provide new insights for involving plant size traits in carbon process models.


Assuntos
Clima , Ecossistema , Humanos , China , Tibet , Plantas , Solo , Mudança Climática
4.
Glob Chang Biol ; 30(1): e17110, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273584

RESUMO

There may be trade-offs in the allocation patterns of recent photosynthetic carbon (RPC) allocation in response to environmental changes, with a greater proportion of RPC being directed towards compartments experiencing limited resource availability. Alternatively, the allocation of RPC could shift from sources to sinks as plants processing excess photosynthates. It prompts the question: Does the pattern of RPC allocation vary under global changes? If so, is this variation driven by optimal or by residual C allocation strategies? We conducted a meta-analysis by complicating 273 pairwise observations from 55 articles with 13 C or 14 C pulse or continuous labeling to assess the partitioning of RPC in biomass (leaf, stem, shoot, and root), soil pools (soil organic C, rhizosphere, and microbial biomass C) and CO2 fluxes under elevated CO2 (eCO2 ), warming, drought and nitrogen (N) addition. We propose that the increased allocation of RPC to belowground under sufficient CO2 results from the excretion of excess photosynthates. Warming led to a significant reduction in the percentage of RPC allocated to shoots, alongside an increase in roots allocation, although this was not statistically significant. This pattern is due to the reduced water availability resulting from warming. In conditions of drought, there was a notable increase in the partitioning of RPC to stems (+7.25%) and roots (+36.38%), indicative of a greater investment of RPC in roots for accessing water from deeper soil. Additionally, N addition led to a heightened allocation of RPC in leaves (+10.18%) and shoots (+5.78%), while reducing its partitioning in soil organic C (-8.92%). Contrary to the residual C partitioning observed under eCO2 , the alterations in RPC partitioning in response to warming, drought, and N supplementation are more comprehensively explained through the lens of optimal partitioning theory, showing a trade-off in the partitioning of RPC under global change.


Assuntos
Dióxido de Carbono , Carbono , Biomassa , Solo , Água
5.
Ying Yong Sheng Tai Xue Bao ; 34(10): 2797-2804, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-37897287

RESUMO

Soil fauna play an important role in key functions of ecosystem such as material cycling. Litter quality and microenvironment of different tree species may regulate soil fauna community structure. In this study, we investigated soil fauna community structure, the differences of taxonomic and functional groups, and the regulatory factors under eight dominant tree species in August 2022. We captured 567 soil fauna (except for termites and ants), belonging to 3 phyla, 10 classes, 26 orders, and 99 families, with Achipteriidae, Trygoniidae, Poduridae, and Isotomidae as the dominant species. Tree species significantly affected soil fauna abundance, following an order: Michelia macclurei > Elaeocarpus decipiens > Castanopsis carlesii > Cunninghamia lanceolata > Lindera communis > Schima superba > Pinus massoniana > Liquidambar formosana. However, the richness, evenness, and diversity of soil fauna under different tree species were significantly different. Richness and diversity of M. macclurei, C. lanceolatas soil fauna were relatively high, while L. formosana, C. carlesii were relatively low. The evenness of meso-microfauna of L. formosana was the highest, which was significantly higher than that of M. macclureis and E. decipiens. The evenness of macrofauna and total soil fauna was not significantly different among the eight tree species. In addition, the abundance of omnivores and herbivores soil fauna was relatively high under M. macclurei, but relatively low under E. decipiens. The abundance of saprophages and predators soil fauna of E. decipiens, M. macclurei was higher than L. formosana, while saprophages was mainly meso-microfauna. Results of redundancy analysis showed that litter N, C:N, and K were the main factors affecting soil fauna community structure. The results indicated that the tree species with thicker litter layer and higher N and K contents may be conducive to enhancing the diversity of soil fauna community and affecting the distribution of different functional groups, thus contributing to the maintenance of forest biodiversity.


Assuntos
Artrópodes , Árvores , Animais , China , Ecossistema , Florestas , Solo
6.
J Hazard Mater ; 460: 132455, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37677973

RESUMO

Water bodies are important carriers for lead (Pb) biogeochemical cycling, which is a key pathway of Pb transport. Although existing studies on Pb loading in inland waters have developed rapidly, a quantitative assessment of the distribution patterns and drivers of Pb concentration in inland waters at the global scale remains unclear. Here, by analyzing 1790 observations collected from 386 independent publications, we assessed the spatial distribution and drivers of Pb concentration in inland waters worldwide. We found that (1) globally, the median of Pb concentration in inland waters was 5.81 µg L-1; (2) among different inland water types, Pb concentration was higher in rivers, and the highest Pb concentration was in industrial land in terms of land use type; (3) Pb concentration in inland waters were positively driven by potential evapotranspiration, elevation and road density; and (4) Pb concentration showed a negative relationship with absolute latitude, decreasing from tropic to boreal regions. Overall, our global assessment of the patterns and drivers of Pb concentration in inland waters contributed to a better understanding of the natural and anthropogenic attributions of Pb in the inland hydrological cycling.

7.
J Environ Manage ; 347: 119148, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37776790

RESUMO

Vegetation restoration is vital for soil ecological restoration in post-mining areas, but a global-scale quantitative assessment of its effects on soil metal elements is lacking. Here, we conducted a meta-analysis with 2308 paired observations collected from 137 publications to evaluate vegetation restoration effects on the concentrations of 17 metal elements, namely K, AK (available K), Ca, Na, Mg, Fe, Mn, Zn, Cu, Al, Cr, Co, Ni, Cd, Sb, Hg, and Pb in post-mining soils. We found that (1) vegetation restoration significantly increased the concentrations of K, AK, Ca, Mg and Co by 43.2, 42.5, 53.4, 53.7, and 137.2%, respectively, but did not affect the concentrations of Na, Fe, Mn, Zn, Cu, Al, Cr, Ni, Cd, Sb, Hg, and Pb; (2) the effects of vegetation restoration on soil metal concentration were seldom impacted by vegetation type, while soil depth only affected the responses of AK, Cd, and Pb concentrations to vegetation restoration, and leaf type only impacted the responses of Ca and Ni concentrations to vegetation restoration; (3) latitude, elevation, restoration year, climate, and initial soil properties were also important moderator variables of vegetation restoration effects, but their impacts varied among different metals. Overall, our results clearly showed that vegetation restoration in posting-mining areas generally have a positive effect on the concentrations of nutrient elements but did not influence that of toxic elements, which provides useful information for the restoration and reconstruction of soil ecosystem in post-mining areas.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Solo , Metais Pesados/análise , Ecossistema , Cádmio , Chumbo , Monitoramento Ambiental/métodos , Mercúrio/análise , Poluentes do Solo/análise , Medição de Risco , China
8.
Sci Data ; 10(1): 435, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414795

RESUMO

Titanium products, regarded as a strategic metal by many national governments, play important and irreplaceable roles in national defence and military applications. China has built a large-scale titanium industrial chain, and its status and development pathways will greatly affect the global market. Several researchers contributed a set of reliable statistical data to bridge the knowledge gap in evaluating the industrial layout and the entire structure of China's titanium industry with little literature information regarding the management of metal scrap in the manufacturers of titanium products. To bridge this data gap, we present a dataset of annual metal scrap circularity to uncover China's evolution of the titanium industry today, which contains off-grade titanium sponge, low-grade titanium scrap, and recycled high-grade titanium swarf with the relevant circularity of the titanium industry in China at the national level from 2005 to 2020.

9.
Environ Sci Pollut Res Int ; 30(33): 80807-80816, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37306875

RESUMO

Anthropogenic development has released large amounts of microplastics (MPs), which are carriers of migratory heavy metals, into the environment, and heavy metal adsorption by MPs may have strong combined toxic effects on ecosystems. However, until now, a comprehensive understanding of the factors influencing these adsorption capacities of MPs has been lacking. Thus, we used 4984 experimental data points to systematically assess the factors influencing the adsorption strength of 8 types of MPs on 13 types of heavy metals. We found that (1) the types of MPs, heavy metals, and adsorption environments significantly impacted the heavy metal adsorption capacities of MPs; (2) polyvinyl alcohol (PVA) showed a higher adsorption capacity for lead (Pb) and cadmium (Cd) than did other MPs, by 2810.62 mg/kg and 2732.84 mg/kg, respectively; (3) the adsorption capacities of MPs for heavy metal were regulated by multiple variables, with heavy metal concentration, MP quality, solution amount, adsorption time, and pH being the most important; and (4) MPs had a higher adsorption capacity in aquatic environments (except for seawater) than which in soil environments. Overall, our study clearly showed that the types of heavy metals, adsorption environments, and MPs influenced the heavy metal adsorption capacities of MPs and may exacerbate their combined environmental toxicity, which would help better characterize the severity of MP pollution.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Microplásticos/química , Plásticos/química , Adsorção , Ecossistema , Poluentes Químicos da Água/análise , Metais Pesados/química
10.
Front Plant Sci ; 14: 1174697, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37384364

RESUMO

Plant litter is not only the major component of terrestrial ecosystem net productivity, the decomposition of which is also an important process for the returns of elements, including sodium (Na) and aluminum (Al), which can be beneficial or toxic for plant growth. However, to date, the global characteristics and driving factors of Na and Al concentrations in freshly fallen litter still remain elusive. Here, we evaluated the concentrations and drivers of litter Na and Al with 491 observations extracted from 116 publications across the globe. Results showed that (1) the average concentrations of Na in leaf, branch, root, stem, bark, and reproductive tissue (flowers and fruits) litter were 0.989, 0.891, 1.820, 0.500, 1.390, and 0.500 g/kg, respectively, and the concentrations of Al in leaf, branch, and root were 0.424, 0.200 and 1.540 g/kg, respectively. (2) mycorrhizal association significantly affected litter Na and Al concentration. The highest concentration of Na was found in litter from trees associated with both arbuscular mycorrhizal fungi (AM) and ectomycorrhizal fungi (ECM), followed by litter from trees with AM and ECM. Lifeform, taxonomic, and leaf form had significant impacts on the concentration of Na and Al in plant litter of different tissues. (3) leaf litter Na concentration was mainly driven by mycorrhizal association, leaf form and soil phosphorus concentration, while leaf litter Al concentration was mainly controlled by mycorrhizal association, leaf form, and precipitation in the wettest month. Overall, our study clearly assessed the global patterns and influencing factors of litter Na and Al concentrations, which may help us to better understand their roles in the associated biogeochemical cycles in forest ecosystem.

11.
ACS Appl Mater Interfaces ; 15(14): 18450-18462, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36989350

RESUMO

Li-rich Mn-based layered oxides (LLOs) are one of the most promising cathode materials, which have exceptional anionic redox activity and a capacity that surpasses 250 mA h/g. However, the change from a layered structure to a spinel structure and unstable anionic redox are accompanied by voltage attenuation, poor rate performance, and problematic capacity. The technique of stabilizing the crystal structure and reducing the surface oxygen activity is proposed in this paper. A coating layer and highly concentrated oxygen vacancies are developed on the material's surface, according to scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. In situ EIS shows that structural transformation and oxygen release are inhibited during the first charge and discharge. Optimized 3@LRMA has an average attenuation voltage of 0.55 mV per cycle (vs 1.7 mV) and a capacity retention rate of 93.4% after 200 cycles (vs 52.8%). Postmortem analysis indicates that the successful doping of Al ions into the crystal structure effectively inhibits the structural alteration of the cycling process. The addition of oxygen vacancies reduces the surface lattice's redox activity. Additionally, surface structure deterioration is successfully halted by N- and Cl-doped carbon coating. This finding highlights the significance of lowering the surface lattice oxygen activity and preventing structural alteration, and it offers a workable solution to increase the LLO stability.

12.
Sci Total Environ ; 879: 163059, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36963687

RESUMO

Vegetation restoration is a widely used, effective, and sustainable method to improve soil quality in post-mining lands. Here we aimed to assess global patterns and driving factors of potential vegetation restoration effects on soil carbon, nutrients, and enzymatic activities. We synthesized 4838 paired observations extracted from 175 publications to evaluate the effects that vegetation restoration might have on the concentrations of soil carbon, nitrogen, and phosphorus, as well as enzymatic activities. We found that (1) vegetation restoration had consistent positive effects on the concentrations of soil organic carbon, total nitrogen, available nitrogen, ammonia, nitrate, total phosphorus, and available phosphorus on average by 85.4, 70.3, 75.7, 54.6, 58.6, 34.7, and 60.4 %, respectively. Restoration also increased the activities of catalase, alkaline phosphatase, sucrase, and urease by 63.3, 104.8, 125.5, and 124.6 %, respectively; (2) restoration effects did not vary among different vegetation types (i.e., grass, tree, shrub and their combinations) or leaf type (broadleaved, coniferous, and mixed), but were affected by mine type; and (3) latitude, climate, vegetation species richness, restoration year, and initial soil properties are important moderator variables, but their effects varied among different soil variables. Our global scale study shows how vegetation restoration can improve soil quality in post-mining lands by increasing soil carbon, nutrients, and enzymatic activities. This information is crucial to better understand the role of vegetation cover in promoting the ecological restoration of degraded mining lands.


Assuntos
Carbono , Solo , Carbono/análise , Mineração , Fósforo/análise , Nitrogênio/análise , China
13.
Artigo em Inglês | MEDLINE | ID: mdl-36834467

RESUMO

Artificial intelligence (AI)-enabled text-to-speech transformation has been widely employed to deliver online information in various fields. However, few studies have investigated the effect of the AI voice in environmental risk communication, especially in the field of climate change, an issue that poses a severe threat to global public health. To address this gap, the current study examines how the AI voice impacts the persuasive outcome of climate-related information and the potential mechanism that underlies this process. Based on the social and affect heuristics of voice, we propose a serial mediation model to test the effect of climate-related information delivered by different voice types (AI voice vs. human voice) in eliciting risk perception and motivating pro-environmental behavioral intention. Through an online auditory experiment (N = 397), we found the following. First, the AI voice was as effective as the human voice in eliciting risk perception and motivating pro-environmental behavioral intention. Second, compared with human voice, the AI voice yielded a listener's lower level of perceived identity oneness with the speaker, which decreased risk perception and subsequently inhibited pro-environmental behavioral intention. Third, compared with human voice, the AI voice produced a higher level of auditory fear, which increased risk perception and thereby led to stronger pro-environmental behavioral intention. The paradoxical role of the AI voice and its wise use in environmental risk communication for promoting global public health are discussed.


Assuntos
Percepção da Fala , Voz , Humanos , Intenção , Inteligência Artificial , Fala
14.
Heliyon ; 9(1): e12984, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36704269

RESUMO

Irregular precipitation caused by climate changes has resulted in frequent events of soil drying-rewetting cycles (DWC), which can strongly affect soil carbon (C) and nitrogen (N) cycling, including the fluxes of greenhouse gases (GHGs). The response of soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes to DWC events may differ among different ecosystem types and vary with experimental settings and soil properties, but these processes were not quantitatively assessed. Here, we evaluated the responses of soil GHG fluxes to DWC, compared with consistent moisture, as well as the associated driving factors with 424 paired observations collected from 47 publications of lab incubation experiments. Results showed that: (1) DWC significantly decreased soil CO2 emissions by an average of 9.7%, but did not affect the emissions and uptakes of soil CH4 and N2O; (2) DWC effects on soil GHG emissions varied significantly among different ecosystem types, with CO2 emissions significantly decreased by 6.8 and 16.3% in croplands and grasslands soils, respectively, and CH4 and N2O emissions significantly decreased and increased in wetlands and forests soils, respectively; (3) the effects of DWC on CO2 emissions were also positively regulated by organic C and N concentrations, pH, clay concentration, and soil depth, but negatively by C:N ratio and silt concentration, while DWC effects on N2O emissions were negatively controlled by C:N ratio, silt concentration, and soil depth. Overall, our results showed that CO2 emissions were significantly decreased by DWC, while the fluxes of CH4 and N2O were not affected, indicating an overall decrease of GHGs in response to DWC. Our results will be useful for a better understanding of global GHG emissions under future climate change scenario.

15.
Sci Total Environ ; 857(Pt 3): 159686, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36302428

RESUMO

Plant litter decomposition is not only the major source of soil carbon and macronutrients, but also an important process for the biogeochemical cycling of trace elements such as iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu). The concentrations of plant litter trace elements can influence litter decomposition and element cycling across the plant and soil systems. Yet, a global perspective of the patterns and driving factors of trace elements in plant litter is missing. To bridge this knowledge gap, we quantitatively assessed the concentrations of four common trace elements, namely Fe, Mn, Zn, and Cu, of freshly fallen plant litter with 1411 observations extracted from 175 publications across the globe. Results showed that (1) the median of the average concentrations of litter Fe, Mn, Zn, and Cu were 0.200, 0.555, 0.032, and 0.006 g/kg, respectively, across litter types; (2) litter concentrations of Fe, Zn, and Cu were generally stable regardless of variations in multiple biotic and abiotic factors (e.g., plant taxonomy, climate, and soil properties); and (3) litter Mn concentration was more sensitive to environmental conditions and influenced by multiple factors, but mycorrhizal association and soil pH and nitrogen concentration were the most important ones. Overall, our study provides a clear global picture of plant litter Fe, Mn, Zn, and Cu concentrations and their driving factors, which is important for improving our understanding on their biogeochemical cycling along with litter decomposition processes.


Assuntos
Manganês , Oligoelementos , Manganês/análise , Zinco/análise , Cobre/análise , Oligoelementos/análise , Solo/química , Ferro/análise , Plantas , Íons
16.
Toxics ; 10(12)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36548611

RESUMO

The weathering and leaching of mining tailings have released large amounts of antimony (Sb) and arsenic (As), causing serious pollution in the surrounding soil, water, and sediments. To understand the leaching characteristics of Sb and As in mining tailings, Zuoxiguo and Qinglong mining tailings were collected for analysis. The average content of Sb in Zuoxiguo and Qinglong tailings was 5902.77 mg/kg and 1426.43 mg/kg, respectively, while that of As was 412.53 mg/kg and 405.26 mg/kg, respectively, which exceeded the local background value. Furthermore, the concentrations of Sb in the leachate of Zuoxiguo and Qinglong increased with time; the average Sb concentration in the leachate of Zuoxiguo and Qinglong was 1470.48 µg/L and 70.20 µg/L, respectively, while that of the As concentration was 31.20 µg/L and 6.45 µg/L, respectively. This suggests that the concentrations of Sb and As in the leachate of Zuoxiguo are both higher than those in the leachate of Qinglong and that the pH of the leachate of Zuoxiguo and Qinglong significantly changed within the first day under different initial pH conditions, and tended to be between 6 and 8, after one day. The results of the average health risk index showed that As in the leachate from Zuoxiguo and Qinglong for children was 5.67 × 10-4 and 9.13 × 10-5, respectively, and 4.43 × 10-4 and 7.16 × 10-5, respectively, for adults. As in the leachate from Zuoxiguo poses serious carcinogenic risks for residents, and in the study area, As poses a serious threat to human health. Therefore, the local government must manage As in these areas.

17.
Ying Yong Sheng Tai Xue Bao ; 33(11): 2936-2942, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36384827

RESUMO

Forest headwater streams are the monumental cement for relating habitats of the terrene and water. Nutri-ent dynamics of non-woody debris in stream can directly and indirectly regulate the cycle and transport of forest nutrients, for example, Ca and Mg. In the rainy season (from March to August) of 2021, we monitored the dyna-mics of Ca and Mg storage of non-woody debris in a typical headwater stream in a subtropical forest. The results showed that total Ca and Mg storage of non-woody debris per unit area of stream ranged from 178.1 to 890.5 mg·m-2 and 13.8 to 61.6 mg·m-2 during the rainy season, respectively. The Ca and Mg storages of non-woody debris per unit area of stream during the rainy season displayed a pattern of first increase and then decrease, and overall a decrease pattern. The storage varied significantly among different sites, with higher values in stream source than others. The total Ca and Mg storage of non-woody debris positively correlated with precipitation, but negatively with stream water alkalinity, temperature, and dissolved oxygen. The variation of riparian forest type (e.g., Castano-psis carlesii forests or mixed coniferous forests) and with or without tributaries did not affect the storage of Ca and Mg in stream non-woody debris. During the rainy season, total Ca and Mg storage of non-woody debris in the headwater stream from forest generally decreased over time, which was mainly controlled by the characteristics of rainfall and stream.


Assuntos
Rios , Árvores , Estações do Ano , Conservação dos Recursos Naturais/métodos , Florestas , Água
18.
Front Psychol ; 13: 943069, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059753

RESUMO

Identification with all humanity (IWAH) is viewed as a critical construct that facilitates global solidarity. However, its origins have rarely been explored in previous literature, and no study has yet investigated the role of pop-culture in cultivating IWAH. To address this gap, this study initially focuses on science fiction (sci-fi), a specific pop-culture genre with worldwide audiences, and examines its effect on IWAH. It hypothesized a direct association between sci-fi engagement and IWAH from the narrative persuasion approach, and an indirect association via abstract construal based on the cognitive-literary approach. Moreover, the moderating role of actively open-minded thinking (AOT) in the direct and indirect association was also assessed. Results were obtained through a cross-sectional survey conducted in China (n = 570) and showed that sci-fi engagement was positively associated with IWAH; this association was also partially mediated by abstract construal. Interestingly, and inconsistent with our hypotheses, AOT positively moderated the indirect effect but negatively moderated the direct effect. Theoretical and practical implications for cultivating IWAH from the media and pop-cultural perspective were discussed.

19.
ACS Omega ; 7(35): 31597-31606, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36092563

RESUMO

The structure and surface-interface instability of LiCoO2 thin-film electrodes during charge-discharge cycles are one of the main factors leading to the deterioration of electrochemical performance. Element doping and surface coating are effective strategies to tackle this issue. In this work, Al-doped and in situ Al2O3-coated LiCoO2 composite thin-film electrodes are prepared by magnetron sputtering. The results show that the resultant composite thin-film electrodes exhibited excellent cycling stability, with a discharge specific capacity of 40.2 µAh um-1 cm-2 after 240 cycles at 2.5 µA cm-2, with a capacity retention rate of 94.14%, compared to a discharge capacity of the unmodified sample of only 37.7 µAh um-1 cm-2 after 110 cycles, with a capacity retention rate of 80.04%. In addition, the rate performance of the prepared LiCoO2 film is significantly improved, and the discharge specific capacity of the Al-doped sample reaches 43.5 µAh um-1 cm-2 at 100 µA cm-2, which is 38.97% higher than that of the unmodified sample (31.3 µAh um-1 cm-2). The enhancement of electrochemical performance is mainly attributed to the synergistic effect of Al doping and in situ Al2O3 coating. The metal Al forms a conductive network in the film, while part of the Al will enter the LiCoO2 lattice to form a LiAl y Co1-y O2 solid solution, promoting the transport of lithium ions and improving the stability of the electrode structure. The in situ continuous deposition of the coating optimizes the active material coating-electrolyte interface.

20.
Front Plant Sci ; 13: 926941, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937380

RESUMO

Lignocellulose is a major component of plant litter and plays a dominant role in regulating the process of litter decomposition, but we lack a global perspective on plant litter initial lignocellulose concentration. Here, we quantitatively assessed the global patterns and drivers of litter initial concentrations of lignin, cellulose, and hemicellulose using a dataset consisting of 6,021 observations collected from 795 independent publications. We found that (1) globally, the median concentrations of leaf litter lignin, cellulose, and hemicellulose were 20.3, 22.4, and 15.0% of litter mass, respectively; and (2) litter initial concentrations of lignin, cellulose, and hemicellulose were regulated by phylogeny, plant functional type, climate, and soil properties, with mycorrhizal association and lifeform the dominant predictors. These results clearly highlighted the importance of mycorrhizal association and lifeform in controlling litter initial lignocellulose concentration at the global scale, which will help us to better understand and predict the role of lignocellulose in global litter decomposition models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...